A Two Step Viscous Damping Method to Solve a Class of Second Order Optimal Control Problems
نویسندگان
چکیده
This paper presents a method to solve the Hamilton-Jacobi-Bellman equation for a class of second order optimal control problems for which the cost is quadratic and the dynamics are affine in the input and in the state directly excited by that input. The solution is based on the concept of inverse optimality and is obtained in two steps. First a scalar problem is solved and then the solution of the second order problem is obtained from the solution to the scalar problem by the addition of a viscous damping term. The running cost that makes the control input optimal is explicitly determined in the second step of the method. A special feature of this method, as compared to other methods in the literature, is the fact that the solution is obtained directly for the control input without needing to assume or compute a value function first. Additionally, the value function can also be obtained after solving for the control input. Three important special cases are highlighted: massspring dynamics, Van der Pol oscillator and integrator backstepping. A Lyapunov function that proves stability of the controller is also constructed for these cases.
منابع مشابه
New operational matrix for solving a class of optimal control problems with Jumarie’s modified Riemann-Liouville fractional derivative
In this paper, we apply spectral method based on the Bernstein polynomials for solving a class of optimal control problems with Jumarie’s modified Riemann-Liouville fractional derivative. In the first step, we introduce the dual basis and operational matrix of product based on the Bernstein basis. Then, we get the Bernstein operational matrix for the Jumarie’s modified Riemann-Liouville fractio...
متن کاملAn Explicit Single-step Method for Numerical Solution of Optimal Control Problems
In this research we used forward-backward sweep method(FBSM) in order to solve optimal control problems. In this paper, one hybrid method based on ERK method of order 4 and 5 are proposed for the numerical approximation of the OCP. The convergence of the new method has been proved .This method indicate more accurate numerical results compared with those of ERK method of order 4 and 5 for solvin...
متن کاملA spectral method based on the second kind Chebyshev polynomials for solving a class of fractional optimal control problems
In this paper, we consider the second-kind Chebyshev polynomials (SKCPs) for the numerical solution of the fractional optimal control problems (FOCPs). Firstly, an introduction of the fractional calculus and properties of the shifted SKCPs are given and then operational matrix of fractional integration is introduced. Next, these properties are used together with the Legendre-Gauss quadrature fo...
متن کاملA New Modification of Legendre-Gauss Collocation Method for Solving a Class of Fractional Optimal Control Problems
In this paper, the optimal conditions for fractional optimal control problems (FOCPs) were derived in which the fractional differential operators defined in terms of Caputo sense and reduces this problem to a system of fractional differential equations (FDEs) that is called twopoint boundary value (TPBV) problem. An approximate solution of this problem is constructed by using the Legendre-Gauss...
متن کاملA Numerical Solution of Fractional Optimal Control Problems Using Spectral Method and Hybrid Functions
In this paper, a modern method is presented to solve a class of fractional optimal control problems (FOCPs) indirectly. First, the necessary optimality conditions for the FOCP are obtained in the form of two fractional differential equations (FDEs). Then, the unknown functions are approximated by the hybrid functions, including Bernoulli polynomials and Block-pulse functions based o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010